You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Traditional texts in mathematical statistics can seem - to some readers-heavily weighted with optimality theory of the various flavors developed in the 1940s and50s, and not particularly relevant to statistical practice. Mathematical Statistics stands apart from these treatments. While mathematically rigorous, its focus is on providing a set of useful tools that allow students to understand the theoretical underpinnings of statistical methodology. The author concentrates on inferential procedures within the framework of parametric models, but - acknowledging that models are often incorrectly specified - he also views estimation from a non-parametric perspective. Overall, Mathematical Statistics places greater emphasis on frequentist methodology than on Bayesian, but claims no particular superiority for that approach. It does emphasize, however, the utility of statistical and mathematical software packages, and includes several sections addressing computational issues. The result reaches beyond "nice" mathematics to provide a balanced, practical text that brings life and relevance to a subject so often perceived as irrelevant and dry.

The exercises are grouped into seven chapters with titles matching those in the author's Mathematical Statistics. Can also be used as a stand-alone because exercises and solutions are comprehensible independently of their source, and notation and terminology are explained in the front of the book. Suitable for self-study for a statistics Ph.D. qualifying exam.

Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner. This book provides a step-by-step procedure t...

This book provides the mathematical foundations of statistics. Its aim is to explain the principles, to prove the formulae to give validity to the methods employed in the interpretation of statistical data. Many examples are included but, since the primary emphasis is on the underlying theory, it is of interest to students of a wide variety of subjects: biology, psychology, agriculture, economics, physics, chemistry, and (of course) mathematics.

This is the first text in a generation to re-examine the purpose of the mathematical statistics course. The book's approach interweaves traditional topics with data analysis and reflects the use of the computer with close ties to the practice of statistics. The author stresses analysis of data, examines real problems with real data, and motivates the theory. The book's descriptive statistics, graphical displays, and realistic applications stand in strong contrast to traditional texts that are set in abstract settings. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

This volume is intended for the advanced study of several topics in mathematical statistics. The first part of the book is devoted to sampling theory (from one-dimensional and multidimensional distributions), asymptotic properties of sampling, parameter estimation, sufficient statistics, and statistical estimates. The second part is devoted to hypothesis testing and includes the discussion of families of statistical hypotheses that can be asymptotically distinguished. In particular,the author describes goodness-of-fit and sequential statistical criteria (Kolmogorov, Pearson, Smirnov, and Wald) and studies their main properties. The book is suitable for graduate students and researchers interested in mathematical statistics. It is useful for independent study or supplementaryreading.

In their bestselling MATHEMATICAL STATISTICS WITH APPLICATIONS, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps students discover the nature of statistics and understand its essential role in scientific research. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Mathematical Basis of Statistics provides information pertinent to the methods and the mathematical basis of statistics. This book discusses the fundamental notion of statistical space. Organized into 12 chapters, this book begins with an overview of the notion of statistical space in mathematical statistics and discusses other analogies with probability theory. This text then presents the notions of sufficiency and freedom, which are fundamental and useful in statistics but do not correspond to any notion in probability theory. Other chapters consider the theory of nonsequential tests and explain the practical meaning of the mathematical tools employed in statistics. This book discusses as well distributions used most frequently in classical statistical problems based on the normal distribution and provides relationships among these distributions. The final chapter deals with certain problems of mathematical statistics that are related to various problems of functional analysis. This book is a valuable resource for graduate and postgraduate students.

This text combines the topics generally found in main-stream elementary statistics books with the essentials of the underlying theory. The book begins with an axiomatic treatment of probability followed by chapters on discrete and continuous random variables and their associated distributions. It then introduces basic statistical concepts including summarizing data and interval parameter estimation, stressing the connection between probability and statistics. Final chapters introduce hypothesis testing, regression, and non-parametric techniques. All chapters provide a balance between conceptual understanding and theoretical understanding of the topics at hand.